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Abstract 

Background: Uncertainty in exposure estimates from models can result in exposure 

measurement error and potentially affect the validity of epidemiological studies. We recently 

utilized a suite of environmental models and an integrated exposure and pharmacokinetic model 

to estimate individual perfluoroocatanoate (PFOA) serum concentrations and assess the 

association with preeclampsia from 1990 through 2006 for the C8 Health Project participants.  

Objectives: The aims of the current study are to evaluate impact of uncertainty in estimated 

PFOA drinking water concentrations on estimated serum concentrations and their reported 

epidemiological association with preeclampsia.  

Methods: For each individual public water district, we used Monte Carlo simulation to vary the 

year-by-year PFOA drinking water concentration by randomly sampling from lognormal 

distributions for random error in the yearly public water district PFOA concentrations, 

systematic error specific to each water district, and global systematic error in the release 

assessment (using the estimated concentrations from the original fate and transport model as 

medians and a range of 2, 5 and 10-fold uncertainty).   

Results: Uncertainty in PFOA water concentrations could cause major changes in estimated 

serum PFOA concentrations among participants. However, there is relatively little impact on the 

resulting epidemiological association in our simulations. The contribution of exposure 

uncertainty to the total uncertainty (including regression parameter variance) ranged between 5 

and 31 %, and bias was negligible.  

Conclusions: We found that correlated exposure uncertainty can substantially change estimated 

PFOA serum concentrations but results in only minor impacts on the epidemiological association 

between PFOA and preeclampsia.  
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Introduction  

Input parameter uncertainty in exposure estimates contributes to exposure measurement error, 

which can be described as the difference between an individual’s true exposure and the assigned 

exposure estimate (Armstrong, 1998). The difference between true and assigned exposure can 

result from inaccuracies in measurement or model-based estimation of environmental chemical 

concentrations, biomarkers, time-activity patterns, and/or pharmacokinetics.  Retrospective fate 

and transport model estimates may be particularly prone to inaccuracies, and integrating multiple 

models in the process of an exposure assessment can result in structural uncertainty, whereby 

uncertainty in one model gets propagated through the following models and can contribute more 

to the overall uncertainty than all of the individual uncertainties combined (Özkaynak et al. 

2008). The use of surrogates for pollutant and participant-level spatiotemporal input data, such as 

modeled pollutant concentrations, self-reported activity patterns, or only one exposure biomarker 

per participant in certain situations, can be viewed as a type of exposure measurement error in 

the assessment (Bartell et al. 2004; Sarnat et al. 2010; Shin et al. 2014; Tsuchiya et al. 2012; Wu 

et al. 2013).  

Exposure measurement error has been shown to introduce bias and random error in 

environmental epidemiological studies (Thomas et al. 1993) and the quality of exposure data has 

been identified as a major determinant of the validity of environmental epidemiology studies 

(Baker and Niewenhuijsen 2008; Rothman et al. 2008). Random exposure measurement error 

can bias the odds ratio and other epidemiological effect estimates, and also diminish the 

precision and power of the epidemiologic studies. As a result, it typically hampers the ability to 

detect an association between the exposure and adverse health effects (Armstrong 1998). 

Although there is a substantial literature on the potential impacts of exposure measurement error 



Environ Health Perspect DOI: 10.1289/ehp.1409044 
Advance Publication: Not Copyedited 
 

4 
 

on epidemiologic studies, much of the literature relies on theoretical examples and/or simplified 

assumptions such as statistically independent measurement errors across participants (Carroll et 

al. 2006; Gustafson 2003; Zeger et al. 2000).  Therefore, there is a need to characterize 

uncertainty in exposure estimates and in turn, to evaluate its potential impacts on reported 

epidemiological associations. 

Residents of the Mid-Ohio Valley have been exposed to perfluorooctanoate (PFOA) since the 

1950s, when large amounts (in the form of ammonium perfluorooctanoate-APFO) were released 

into the atmosphere  and discharged into the Ohio River from a DuPont chemical facility, 

contaminating surrounding air, soil, surface water, and groundwater with PFOA. The primary 

exposure pathway for nearby residents was consumption of water contaminated by long-term air 

emissions, deposition on surface soil, and transport through the vadose and saturated zones to 

public and private wells; an additional water consumption pathway occurred due to direct 

emissions into the Ohio River contaminating downstream water supplies (Paustenbach et al. 

2007).  A series of epidemiologic studies have been conducted  on PFOA and adverse health 

outcomes for participants in the C8 Health Project, a cross-sectional study that collected 

residential, occupational, and medical histories and serum samples in the contaminated region 

from 2005-2006 (Frisbee et al. 2009). We previously conducted retrospective PFOA exposure 

assessment for participants in the C8 Health Project, integrating several environmental fate and 

transport models, an exposure model, and a pharmacokinetic model to estimate air and water 

concentrations, personal exposures, and serum concentrations from 1951 to 2008 using 

individual residential histories, drinking water sources, and tap water consumption rates (Shin et 

al. 2011a; Shin et al. 2011b). These serum concentration estimates have been used subsequently 
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in various epidemiological studies led by C8 Science Panel members to evaluate associations 

between PFOA exposure and various adverse health effects (C8 Science Panel 2013). 

This retrospective exposure assessment included uncertainty in input parameters utilized in our 

PFOA fate and transport models. Out of many input parameters, the soil adsorption coefficient 

(Kd) of PFOA, annual emission rates from the production facility, fraction of organic carbon (foc) 

in the surface soil and unsaturated soil zones, and historical pumping rates of public water wells 

were previously identified as being influential and uncertain due to incomplete data (Shin et al. 

2011a; Shin et al. 2012). Uncertainty in these and other parameters can impact the accuracy of 

exposure estimates and subsequently, the validity of epidemiological study results. However, it is 

unclear to what extent uncertainties in the exposure estimates threaten the validity of those study 

results and other epidemiologic findings in this study population.  

Critical features of our exposure model include a common exposure pathway for people using 

the same public water source, and linkage of personal residential histories with specific public 

water sources over time.  These model features are important not only as drivers of PFOA 

exposure, since contaminated drinking water is thought to be the predominant exposure route for 

most participants (Shin et al. 2011b), but also as indications that exposure uncertainty is unlikely 

to be statistically independent across participants with the same water source, or across years for 

the same participant.   

Savitz et al. (2012) reported a modest association between estimated serum PFOA concentrations 

in the year of pregnancy and preeclampsia; restriction to participants with highest quality 

residential history data strengthened the correlation between the observed and the estimated 

serum concentrations (Shin et al. 2011b), and also the observed epidemiological association 
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(Savitz et al. 2012).  Heavily influenced by the Savitz et al. (2012) study, a recent review of 

existing literature concluded that there is a probable link between exposure to PFOA and 

pregnancy-induced hypertension/ preeclampsia (C8 Science Panel 2011). Given the borderline 

statistical significance and the fact that the association strengthens with more accurate exposure 

assignments, it is important to study the potential impact of inaccurate exposure assignments on 

that epidemiological association. 

The objective of the present study is to evaluate the potential impact of systematic and random 

uncertainty in the estimated PFOA drinking water and serum concentrations on the 

epidemiological association between PFOA exposure and preeclampsia. For each of the six 

public water districts (PWD) in the C8 Health Project, we generated multiple plausible year-by-

year PFOA drinking water concentrations via Monte Carlo simulation (for a range of 2, 5 and 

10-fold uncertainty) and used these new water concentrations to estimate serum PFOA 

concentrations using the integrated exposure and pharmacokinetic model. This manuscript 

evaluates the impact of uncertainty in the fate and transport models by specifying probability 

distributions directly for PFOA drinking water concentrations instead of specifying distributions 

for each of the many input parameters in the models; hence it can be considered a screening-level 

uncertainty analysis. This analysis focuses solely on uncertainty in PFOA drinking water 

concentrations and does not consider uncertainty in individual-level parameters (drinking water 

intake and pharmacokinetics). 

Methods 

Retrospective exposure assessment 

To estimate historical PFOA serum concentrations for participants in the C8 Health Project, we 

previously conducted a retrospective exposure assessment (Shin et al. 2011a, Shin et al. 2011b) 
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which includes PFOA release assessment, integrated fate and transport modeling, dose 

reconstruction, and estimation of historical serum PFOA concentrations for each participant.  

The major steps in that exposure assessment are summarized in the following paragraph.   

First, historical PFOA emission rate estimates from the DuPont facility were obtained from a 

previous study conducted by Paustenbach et al. (2007). Second, we applied a suite of established 

environmental fate and transport models to estimate the concentrations of PFOA in the air, 

groundwater and six municipal water supply wells around the facility for the years of 1951-2008. 

Input parameters of these environmental models include historical emission rate estimates, 

physicochemical properties of PFOA, and local meteorological and hydrologic data. The six 

PWDs that are involved in the C8 Health Project included the City of Belpre, Little Hocking 

Water Association, Tuppers Plains Chester Water District, the Village of Pomeroy Water 

District, Lubeck Public Services District, and Mason County Public Service District. Figure 1 

shows the model estimated PFOA water concentrations in the six PWDs over time from 1951 to 

2008. Third, the estimated yearly air and water concentrations from environmental modeling 

were utilized to estimate historical PFOA exposures along with individual residential/work 

histories, demographic information (age, gender, body weight), standard exposure factors (air 

inhalation rate, drinking water ingestion rate), and historical pipe installation information of 

public water supply. Last, a single-compartment pharmacokinetic model was used to estimate 

year-by-year serum PFOA concentrations for each individual. Among all participants (N = 

43,449), the Spearman’s rank correlation coefficient between the estimated and the 2005-2006 

observed serum PFOA concentration (measured as a part of the C8 Health Project) was 0.67 

(Shin et al, 2011b). Median estimated and observed serum concentrations in 2005-2006 were 

13.7 and 23.5 ng/mL, respectively. 
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In the present manuscript we did not change the first or second steps of the exposure assessment, 

but repeated the third and lasts steps many times using alternative water concentration estimates 

in order to gauge the potential impacts of uncertainties in PFOA drinking water concentrations 

(uncertainties in the exposure assessment/pharmacokinetic models were not considered) on 

estimated serum concentrations and epidemiologic results.    

Previous epidemiological analysis 

Using the estimated historical PFOA serum concentrations, Savitz et al. (2012) evaluated the 

associations between estimated PFOA serum concentrations at pregnancy and self-reported 

pregnancy related health outcomes, including preeclampsia among the C8 Health Project 

participants from 1990-2006 using generalized estimating equation regression models. There are 

730 self-reported preeclampsia outcomes among the total 10,189 pregnancies. To address 

potential confounding, they adjusted for maternal age, parity, education and maternal smoking 

status. The adjusted odds ratio (AOR) for the continuous exposure variable was 1.13 (95% 

confidence interval (CI) = 1.00-1.28) for an interquartile range (IQR, 25th to 75th percentile) of 

natural log-transformed (ln) PFOA serum concentration (IQR [lnPFOA] = 2.19 ln ng/mL).    

We obtained approval (HS#2013-9421) from the Institutional Review Board at the University of 

California, Irvine, to work with the human subject data in this current study. We modified the 

original analysis by excluding 40 pregnancies of 25 mothers who had work histories in the 

DuPont PFOA production facilities. These participants might have additional occupational 

exposure to PFOA before and during pregnancy, which sometimes exceeds the contribution from 

residential drinking water ingestion.  Excluding these pregnancies changes the AOR (95% CI) to 

1.11 (0.99, 1.24) per IQR with 725 preeclampsia outcomes among 10,149 pregnancies (IQR 

[lnPFOA] = 1.85 ln ng/mL).   
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Monte Carlo simulation 

In the Monte Carlo uncertainty analysis, because public well water was a primary exposure route 

for our study population (Shin et al. 2011b), we selected year-by-year PFOA drinking water 

concentrations for each of the six PWDs (output from the retrospective fate and transport model) 

as primary uncertain input parameters and AOR for preeclampsia (output from the 

epidemiological model) as the output of Monte Carlo simulations. We assumed that PFOA 

drinking water concentrations are lognormally distributed, because contaminant concentrations 

are non-negative (Limpert et al. 2001; Morgan et al. 1990). 

 For each of the six PWDs, we used the following equation to generate multiple simulated 

drinking water concentrations (n = 500, using Monte Carlo simulation) by multiplying the 

originally estimated average PFOA drinking water concentrations (Shin et al. 2011a) by three 

multiplicative uncertainty factors, U1, U2, and U3:  

    Ci,j,k = C0,i,j × U1i,j,k × U2i,k × U3k    [1] 

where Ci, j, k is the simulated PFOA drinking water concentration for a PWD i for a year j for the 

k’th iteration. C0,i,j is the previously estimated average PFOA drinking water concentration for a 

PWD i for a year j.U1i, j, k is the random uncertainty factor for a PWD i for a year j for the k’th 

iteration not specific to any source and it varies the PFOA concentration by PWD by year by 

iteration. Ln U1i, j, k follows a multivariate normal (MVN) distribution (corresponding to each 

year of exposure) with a mean of 0 for every year (represented as 0, referring to a vector of 

zeroes of length 58), a correlation matrix of Σ, and a constant variance across years, σ2, i.e., ln 

U1i, j, k ~ MVN (0, Σ σ2). We chose off-diagonals of the correlation matrix to stipulate first order 

autocorrelation of uncertainties across years, with an auto-correlation factor φ. Thus, sampled 
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uncertainty factors for closer years are similar compared to those that are far apart. For example, 

the sampled PFOA concentrations that are 3 years apart will be correlated by a factor of φ3.         

U2i, k is the systematic uncertainty factor for a PWD i for the k’th iteration due to mis-

characterized PFOA transport in the unsaturated soil zone and groundwater aquifers within the 

groundwater catchment area of each PWD and thus the PWD-specific uncertainty factor is 

applied during the time period public water was a primary drinking water source. Ln U2i, k 

follows a normal distribution with a mean of 0 and variance of σ2, i.e., ln U2 i, k ~ N (0, σ2). An 

example to describe U2 is the role of a parameter like the wind direction/speed. Any uncertainty 

in the wind direction/speed will impact the atmospheric transport and the deposition location of 

PFOA, systematically influencing each estimated PWD PFOA concentration for all years but 

with a different magnitude and/or direction for each PWD. For example, mischaracterization of 

the wind speed and direction due to reliance on off-site meteorological data might be expected to 

systematically increase the PFOA deposition in some water districts for all years, and to decrease 

the PFOA deposition in other water districts for all years because a different prevailing wind 

direction would increase PFOA deposition rates for downwind water catchment basins but 

decrease deposition rates for other catchment basins.    . 

U3k is the global uncertainty factor for the k’th iteration and includes systematic error that affects 

all PWDs and all years in the same way, such as systematic under- or over-estimation of the 

PFOA emission rates. Ln U3k follows a normal distribution with a mean of 0 and variance of σ2, 

i.e., ln U3 k ~ N (0, σ2).  
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Because U1, U2, and U3 are generated independently of the original water concentration 

assignments C!,!,!, this model simulates additional classical (as opposed to Berkson) 

measurement error in the drinking water concentrations. 

We repeated the analysis for four different hypothetical values of φ (which applies only to U1): 

0, 0.5, 0.9, and 0.95 (chosen in order to represent a range starting with no correlation between 

adjacent years to a high correlation between adjacent years).  The medians of U1, U2 and U3 are 

each set to 1 (giving equal probability for any randomly selected value to be higher or lower than 

1), which corresponds to a ln mean of µ = 0. A range of ln variances (σ2): 0.13, 0.67, and 1.38, 

which corresponds to 95% probability intervals of 2-, 5- and 10-fold uncertainties respectively 

(chosen to represent low, medium, and high levels of uncertainty) are simulated with the same 

value of σ2 used to specify the distributions of U1, U2, and U3.  Thus, a total of 12 different 

Monte Carlo simulations were conducted corresponding to the various combinations of the ln 

variance parameter σ2 (0.13, 0.67, and 1.38, each applied to U1, U2, and U3) and φ (0, 0.5, 0.9, 

and 0.95, applied to U1 only).  

MATLAB (The Mathworks Inc., Natick, MA, 2000) and R (http://www.r-project.org/) 

programming languages were used to run Monte Carlo analyses.  For each of the 500 Monte 

Carlo iterations, we applied simulated drinking water concentrations to our integrated exposure 

and pharmacokinetic model to estimate serum concentrations and reanalyzed the association 

between newly simulated PFOA serum concentrations and the odds of preeclampsia occurrence. 

The AOR was computed per IQR of serum PFOA concentrations using multiple logistic 

regression, with recalculation of the IQR and a new regression for each Monte Carlo iteration. 
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We charactered overall uncertainty in the epidemiologic association using the Law of Total 

Variance:  var(b) = E(var(b|X)) + var(E(b|X)), where b is the log odds parameter estimate and X 

is the collection of personal exposure estimates.  The first term in the summation is the 

contribution of participant sampling uncertainty, and is estimated by the mean value of the log 

odds parameter variance across 500 iterations of the logistic regression.  The second term in the 

summation is the contribution of exposure uncertainty, and is estimated by the variance of the 

log odds point estimate across 500 iterations.  The standard error of the log odds is the square 

root of the total variance, and is used to produce 95% probability intervals summarizing the 

Monte Carlo simulation results. The percent contribution of exposure uncertainty to total 

uncertainty is given by var(E(b|X)) / var(b). 

Results   

Illustrative Examples  

We begin by showing plots with results from individual iterations, using 5 Monte Carlo iterates 

as an illustrative example.  Although 5 iterations are insufficient to generate a reliable sample for 

propagation of uncertainty, we find the plots helpful for visualizing the complex exposure 

patterns produced by our three-level uncertainty factors (U1, U2, and U3).  In order to illustrate 

the combined effect of the three uncertainty factors, we randomly selected five sets of values 

(“iterations”) for U1, U2, and U3 from the appropriate probability distributions, and then 

computed PWD water concentrations for each iteration using Equation 1.  Figure 2 shows PFOA 

concentrations in Pomeroy PWD (micrograms/liter) in log 10 scale over time for five iterations, 

with the upper panel representing the Monte Carlo simulation using uncertainty factors U1, U2, 

and U3, (φ = 0.95, σ2 = 0.13) and the lower panel representing the Monte Carlo simulation using 

uncertainty factors U1, U2, and U3, (φ = 0, σ2 = 0.13). The black line corresponds to the original 
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estimated PFOA drinking water concentrations and the other five colored lines correspond to 

each of the Monte Carlo iteration obtained by multiplying the original PFOA concentration by 

the uncertainty factors. This example was chosen to visually show how the Monte Carlo 

simulation looks for the scenario when there is a low level of uncertainty in PWD concentration 

and high correlation versus no correlation between sampled uncertainty factors for adjacent years 

(U1). The Monte Carlo simulated PWD PFOA concentration curves are smoother over time with 

φ = 0.95, as expected. φ = 0 corresponds to no correlation between the random values sampled 

(from the multivariate lognormal distribution U1) for adjacent years; for those simulations, the 

Monte Carlo simulation curves are more jagged. Adjacent year PFOA drinking water 

concentrations are expected to be correlated and the PFOA concentration curves are smooth over 

time, since changes in PFOA flux to the surface soil will tend to be smoothed over time as PFOA 

travels through the subsurface into the groundwater table.   

Full Monte Carlo Simulation 

Next we present results for Monte Carlo simulation with 500 iterations for each of the 12 

simulations (Table 1) using the full uncertainty model with U1, U2, and U3 (with σ2 = 0.13, 

0.67, or 1.38, and φ = 0, 0.5, 0.9, or 0.95). Figure 3 is a plot of mean and 95% probability 

interval (the 2.5th and 97.5th percentiles) over 500 iterations of rank correlation between the 

simulated and original serum PFOA concentration estimates for all the Savitz et al. (2012) study 

participants between the years 1990 and 2006, for the Monte Carlo simulation using uncertainty 

factors U1, U2, and U3 (φ = 0.95, σ2 = 1.38). Although only one simulation is plotted here, it is 

the simulation with the highest impact of uncertainty on the serum prediction estimates (i.e., the 

other 11 simulations produce higher rank correlations). 
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The mean, median, 25-75 percentile serum concentrations at birth (ng/mL), across 10149 

participants were calculated and their mean and 95% probability interval among 500 iterations 

are shown in the Table 1, along with those of the modified original analysis.  The IQR of ln 

serum PFOA concentrations varied somewhat across the 500 iterations but generally remained 

the same order of magnitude as the original value of 1.85 ln ng/mL.  For example, for σ2 = 0.13 

and φ = 0 the 95% PI for the IQR was (1.38, 2.61) ln ng/mL, and for σ2 = 1.38 and φ = 0.95 the 

95% PI for the IQR was (0.79, 4.33) ln ng/mL.   

The mean and 95% probability interval for the AOR associating serum PFOA concentrations and 

preeclampsia for each simulation are shown in Table 2.  The mean AOR in the 12 simulations 

ranged between 1.10 and 1.12. The percent contribution of exposure uncertainty to total 

uncertainty is tabulated in Table 3. Exposure uncertainty contributed anywhere between 5 and 31 

% to the total uncertainty in this analysis.  

Discussion 

Although incorporating autocorrelated and shared uncertainty in our water concentration 

estimates produced a highly variable set of plausible serum PFOA concentrations, it had less 

impact on the rank order of estimated serum PFOA concentrations during pregnancy.  Moreover, 

these changes in estimated serum PFOA had a negligible impact on the mean AOR for 

preeclampsia and only modestly increased its total standard error, likely because the regression is 

more sensitive to the rank order of participant exposures than it is to absolute exposure 

assignments.  The existing epidemiological literature suggests that adding independent, non-

differential classical exposure measurement error will tend to bias the effect estimate towards the 

null hypothesis (Armstrong 1998).  However, we observed no substantial bias in our Monte 

Carlo simulations.  This may be due to our focus on potential errors in characterizing PWD water 
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concentrations, which are shared exposure sources, rather than simulating independent exposure 

measurement errors.  As a brief test of that explanation, we ran two additional simulations 

without U1, U2, or U3, but now adding a new lognormal uncertainty factor for individual 

drinking water ingestion rates, with 10-fold and 100-fold uncertainty (100 iterations each).  

Mean AORs in these simulations were 1.09 and 1.07, respectively, indicating greater sensitivity 

of the epidemiologic results (the original AOR was 1.11) to independent exposure errors than to 

the shared exposure errors of the primary analysis shown in Table 2.  The weak association 

between PFOA and preeclampsia may also make it appear less sensitive to both shared and 

independent exposure uncertainties (e.g., a change of the AOR from 1.11 to 1.07 appears small 

but actually constitutes a 35% decrease in the log odds parameter).  PFOA water concentrations 

in the contaminated region differed by several orders of magnitude across PWDs and across 

years (Shin et al. 2011a), which may explain why perturbing the exposure estimates with as 

much as 10-fold uncertainty contributed only modestly to the total standard error and negligibly 

to bias.  Indeed, using regression calibration (Rosner, 2010) treating the Monte Carlo simulation 

as a simulated reproducibility study and assuming independent measurement errors across 

participants, we compute for the simulation with φ = 0.95 and σ2 = 1.38 an intra-class correlation 

coefficient of r1 = 0.25 and a corrected AOR of 1.72 (95% confidence interval: 1.04, 2.87).  The 

independence assumption is clearly unwarranted here, but this exercise illustrates that potential 

inaccuracies in our historical water concentration estimates may pose a far lesser threat to the 

validity of previously published epidemiologic associations between PFOA and preeclampsia in 

the C8 Health Study than suggested by traditional models for exposure measurement error. 

At the selected exposure uncertainty variances (σ2), varying the autocorrelation parameter (φ) 

had little impact on the output AOR distribution, only slightly increasing the total standard error.  
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Although the direction of the effect is reasonable because a multi-year increase or multi-year 

decrease in water concentrations is more likely with higher autocorrelation and produces a larger 

change in serum concentration than a mix of yearly increases and decreases, we expected the 

total standard error to be more strongly affected by this parameter than it was.  This is somewhat 

reassuring considering that it is more difficult to interpret and choose a reasonable value of φ 

than σ2.   

The contribution of correlated exposure uncertainty to the overall uncertainty in an 

epidemiologic analysis of PFOA exposure and preeclampsia is estimated here. Traditional 

confidence intervals only account for participant sampling variance, not the effects of exposure 

uncertainty.  In this specific PFOA exposure assessment-environmental epidemiology analysis, 

fate and transport model uncertainty seems to contribute only modestly to the overall uncertainty 

in the relationship between PFOA exposure and preeclampsia.  Although these results cannot be 

generalized to other settings, the methods could be applied to other epidemiological analyses 

including studies of PFOA and other health effects in this population. This may be particularly 

important in weighing disparate findings from studies that utilize different methods of exposure 

assessment (e.g., fate and transport models, questionnaires, and/or biomarkers). Although meta-

analysis provides a method for combining disparate study findings, it traditionally weighs studies 

only by their estimated parameter variances (i.e., sampling variability) and does not address the 

quality of exposure assessment or other study design characteristics.    

Drinking water ingestion is a major exposure route (versus inhalation or dermal exposure) for 

our study population in all years, except for the participants who consumed water from Little 

Hocking before 1974 and those who consumed water from Belpre before 1990 (Shin et al. 

2011b). Given this, and the fact that the epidemiological analysis included pregnancies occurring 
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only between 1990 and 2006, we chose to model uncertainty only for the drinking water 

concentrations in this analysis, not perturbing the original inhalation exposure estimates for each 

Monte Carlo iteration. Private well water has been used by participants in the study over their 

residential history in the area and can be a potential source of uncertain PFOA exposure to the 

participants. However, only 9.6% of the Savitz et al. (2012) study participants had at least one 

source of private water consumption between the years 1985 and 2006. Therefore, we did not 

consider the uncertainty in the private well PFOA concentrations in our analysis as we deemed it 

to be negligible compared to the PWD PFOA contribution to the total exposure. Another 

relatively minor source of PFOA exposure is through the consumption of vegetables that were 

either grown locally or home grown; however due to the sparseness of data specific to the 

individual participant vegetable consumption, the original model did not consider this route of 

exposure (Shin et al. 2011a). We also did not assess independent sources of error such as 

individual variations/uncertainty in ingestion rates and pharmacokinetics of PFOA. These 

uncertainties are likely to produce Berkson-like error structures in the individual exposure 

assignments (Berkson 1950; Heid et al. 2004), because group-level pharmacokinetic and water 

ingestion rates were assigned in the absence of individual-level data.  Incorporation of these 

components into the uncertainty analysis would likely cause an increase in the apparent 

contribution of exposure uncertainty to uncertainty in the epidemiologic findings.     

Our uncertainty analysis explores the impact of changing the original PFOA exposure 

assignments by simulating additional measurement error, but it does not “correct” or “adjust” for 

errors in exposure assignment.  Regression calibration (Rosner 2010) can be used to correct 

AORs to account for a simple exposure measurement error structure, but would have to be 

adapted for use with complex simulations such as our setting.  Regression calibration includes 



Environ Health Perspect DOI: 10.1289/ehp.1409044 
Advance Publication: Not Copyedited 
 

18 
 

three important assumptions that are not valid in our study: 1) the measurement errors are 

normally distributed, 2) the errors are statistically independent of the surrogate exposure and 

independent across individuals, and 3) the other covariates in the regression model are measured 

without error.  In our study the measurement error components are lognormally distributed and 

strongly correlated among individuals with the same water source, and covariates such as 

smoking status were likely measured imperfectly due to the use of self-reports.    

Conclusions 

The Monte Carlo uncertainty analysis described here can be considered a screening-level 

uncertainty analysis, since we are characterizing uncertainty in the environmental model 

estimated PWD PFOA concentrations as a surrogate for hundreds of parameters in the suite of 

fate and transport models used to estimate the PWD PFOA concentrations. Using separate U1, 

U2, and U3 uncertainty components allows for specification of correlations in exposure 

measurement errors across years and across individuals with shared exposure sources, in contrast 

to standard epidemiologic models that assume independence of the measurement errors 

(Armstrong 1998; Rosner 2010). Due to the complexity of this particular suite of fate and 

transport models, which take days to weeks to run for a single set of input parameters, a 

parameter-based Monte Carlo uncertainty analysis would require a prohibitive amount of 

computer time.  Our screening-level assessment suggests that correlated exposure measurement 

error may produce dramatic changes in PFOA serum estimates yet contribute only modestly to 

overall uncertainty regarding the epidemiologic association between PFOA and preeclampsia. As 

a next step, exploring the impact of individual-level uncertainties in the exposure assessment and 

pharmacokinetic model will provide more insight regarding the effects of exposure uncertainty 

on this epidemiological association. Future epidemiologic analyses might benefit from 
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simulation studies or other techniques for evaluating the impacts of uncertainties in complex 

exposure models.  

  



Environ Health Perspect DOI: 10.1289/ehp.1409044 
Advance Publication: Not Copyedited 
 

20 
 

References 

Armstrong BG. 1998.Effect of measurement error on epidemiological studies of environmental 

and occupational exposures. Occup Environ Med 55(10):651–656. 

Baker D, Niewenhuijsen MJ. 2008. Environmental epidemiology: study methods and 

application. New York, NY: Oxford University Press Inc. 

Bartell SM, Griffith WC, Faustman EM. 2004. Temporal error in biomarker-based mean 

exposure estimates for individuals. J Expo Anal Environ Epidemiol 14(2):173–179. 

Bradman A,  Kogut K,  Eisen EA, Jewell NP, Quirós-Alcalá L,  Castorina R, et al. 2013. 

Variability of organophosphorous pesticide metabolite levels in spot and 24-hr urine 

samples collected from young children during 1 week. Environ Health Perspect 121(1):118–

124. 

Berkson L. 1950. Are there two regressions? J Am Stat Assoc 45:164–180. 

Carroll RJ, Ruppert D, Stefanski LA, Crainicieanu CM. 2006.Measurement error in nonlinear 

models: a modern perspective. Boca Raton, FL: Chapman and Hall/CRC Press LLC. 

C8 Science Panel. 2011. Probable link evaluation of pregnancy induced hypertension and 

preeclampsia. Available: http://www.c8sciencepanel.org/prob_link.html. [accessed 17 May 

2014].  

C8 Science Panel. 2013. The science panel website. Available: http://www.c8sciencepanel.org/. 

[accessed 17 May 2014]. 

Frisbee SJ, Brooks a. P, Maher A, Flensborg P, Arnold S, Fletcher T et al. 2009.The C8 Health 

project: design, methods, and participants. Environ Health Perspect 117(12):1873–1882. 

Gustafson P. 2003. Measurement error and misclassification in statistics and 

epidemiology: impacts and Bayesian adjustments. Boca Raton, FL: Chapman and Hall/CRC 

Press LLC. 

Heid IM, Küchenhoff H, Miles J, Kreienbrock L, Wichmann HE. 2004. Two dimensions of 

measurement error: Classical and Berkson error in residential radon exposure assessment. J 

Expo Sci Environ Epidemiol 14, 365–377. 

Limpert E, Stahel WA, Abbt M. 2001. Log-normal distributions across the sciences: keys and 

clues. Bioscience 51(5):341. 

Morgan G, Henrion M, Small M. 1990.Uncertainty: a guide to dealing with uncertainty in 

quantitative risk and policy analysis. New York, NY: Cambridge University Press. 



Environ Health Perspect DOI: 10.1289/ehp.1409044 
Advance Publication: Not Copyedited 
 

21 
 

Özkaynak H, Frey HC, Hubbell B. 2008. Characterizing variability and uncertainty in exposure 

assessments improves links to environmental decision-making. EM (Pittsburgh Pa) 

58(7):18–22. 

Paustenbach DJ, Panko JM, Scott PK, Unice KM. 2007. A methodology for estimating human 

exposure to perfluorooctanoic acid (PFOA): a retrospective exposure assessment of a 

community (1951-2003). J Toxicol Environ Health A 70(1):28–57. 

R Core Team. 2015. R: A Language and Environment for Statistical Computing. Vienna, 

Austria:R Foundation for Statistical Computing. Available: http://www.r-project.org/. 

[accessed 1 November 2013].  

Rosner B. 2010. Fundamentals of biostatistics. Boston, MA: CENGAGE Learning. 

Rothman KJ, Greenland S, Lash TL. 2008. Modern epidemiology. Philadelphia, PA: Lippincott 

Williams and Wilkins. 

Sarnat SE, Klein M, Sarnat JA, Flanders WD, Waller LA, Mulholland JA et al. 2010. An 

examination of exposure measurement error from air pollutant spatial variability in time-

series studies. J Expo Sci Environ Epidemiol 20(2):135–146. 

Savitz DA, Stein CR, Bartell SM, Elston B, Gong J, Shin H-M, et al. 2012. Perfluorooctanoic 

acid exposure and pregnancy outcome in a highly exposed community. Epidemiology 

23(3):386–392. 

Shin H-M, Vieira VM, Ryan PB, Detwiler R, Sanders B, Steenland K et al. 2011a. 

Environmental fate and transport modeling for perfluorooctanoic acid emitted from the 

Washington Works Facility in West Virginia. Environ Sci Technol 45(4):1435–1442. 

Shin H-M, Vieira VM, Ryan PB, Steenland K, Bartell SM. 2011b. Retrospective exposure 

estimation and predicted versus observed serum perfluorooctanoic acid concentrations for 

participants in the C8 Health Project. Environ Health Perspect 119(12):1760–1765. 

Shin H-M, Ryan PB, Vieira VM, Bartell SM. 2012. Modeling the air-soil transport pathway of 

perfluorooctanoic acid in the mid-Ohio valley using linked air dispersion and vadose zone 

models. Atmos Environ 51:67–74. 

Shin H-M, Steenland K, Ryan PB, Vieira VM, Bartell SM. 2014. Biomarker-based calibration of 

retrospective exposure predictions of perfluorooctanoic acid. Environ Sci Technol 

48(10):5636–5642. 



Environ Health Perspect DOI: 10.1289/ehp.1409044 
Advance Publication: Not Copyedited 
 

22 
 

Thomas D, Stram D, Dwyer J. 1993. Exposure measurement error: Influence on expo sure-

disease relationships and methods of correction. Annu. Rev. Publ. Health 14:69–93. 

Tsuchiya A, Duff R, Stern AH, White JW, Krogstad F, Burbacher TM et al. 2012. Single blood-

Hg samples can result in exposure misclassification: temporal monitoring within the 

Japanese community (United States). Environ Health 11(1):37. 

Wu J, Jiang C, Jaimes G, Bartell S, Dang A, Baker D et al. 2013. Travel patterns during 

pregnancy: comparison between Global Positioning System (GPS) tracking and 

questionnaire data. Environ Health 12(1):86. 

Zeger SL, Thomas D, Dominici F, Samet JM, Schwartz J, Dockery D et al. 2000. Exposure 

measurement error in time-series studies of air pollution: concepts and consequences. 

Environ Health Perspect 108(5):419–426. 

 



Environ Health Perspect DOI: 10.1289/ehp.1409044 
Advance Publication: Not Copyedited 
 

23 
 

Table 1: The mean and the 95% probability interval (PI) of the mean, median, 25th and 75th percentile serum concentrations at birth 

(ng/mL), across 10,149 participants for each of the 12 Monte Carlo simulations (500 iterations per simulation). 

Simulation Mean (95% PI) Median (95% PI) 25th percentile (95% PI) 75th percentile (95% PI) 
Modified original 51.06 9.42 5.09 32.45 
 (σ2=0.13, φ=0) 60.20 (27.07, 132.37) 9.73 (7.69, 13.15) 5.09 (4.94, 5.27) 36.35 (19.72, 71.53) 
 (σ2=0.13, φ=0.50) 60.57 (25.80, 121.72) 9.73 (7.52, 12.56) 5.09 (4.91, 5.26) 36.74 (18.98, 64.36) 
 (σ2=0.13, φ=0.90) 57.58 (27.27, 120.46) 9.56 (7.75, 12.17) 5.08 (4.95, 5.20) 34.67 (20.26, 62.98) 
 (σ2=0.13, φ=0.95) 61.38 (26.65, 135.05) 9.66 (7.65, 12.67) 5.09 (4.91, 5.25) 36.11 (19.99, 68.27) 
 (σ2=0.67, φ=0) 124.43 (17.73, 477.59) 11.27 (6.66, 23.65) 5.14 (4.88, 5.75) 55.16 (14.52, 181.99) 
 (σ2=0.67, φ=0.50) 118.07 (15.19, 490.83) 10.89 (6.67, 26.49) 5.12 (4.81, 5.80) 54.57 (13.93, 209.57) 
 (σ2=0.67, φ=0.90) 124.00 (16.82, 578.14) 10.61 (6.43, 21.34) 5.10 (4.78, 5.61) 53.73 (12.96, 218.77) 
 (σ2=0.67, φ=0.95) 128.44 (12.85, 641.07) 10.77 (6.38, 26.59) 5.11 (4.80, 5.77) 55.79 (12.69, 222.65) 
 (σ2=1.38,φ=0) 267.18 (14.73, 1595.08) 13.84 (6.14, 39.71) 5.19 (4.77, 5.92) 95.98 (11.42, 451.10) 
 (σ2=1.38, φ=0.50) 455.98 (13.90, 2600.70) 14.27 (6.18, 57.83) 5.16 (4.78, 6.10) 102.68 (11.82, 620.82) 
 (σ2=1.38, φ=0.90) 390.51 (11.50, 3075.62) 13.67 (5.86, 51.01) 5.14 (4.72, 6.11) 102.90 (11.19, 565.64) 
 (σ2=1.38, φ=0.95) 396.66 (10.03, 2686.75) 12.47 (5.72, 35.71) 5.12 (4.69, 6.03) 83.63 (10.48, 433.71) 
σ2 = Log variance of the uncertainty distributions U1, U2, and U3 

φ = autocorrelation factor of uncertainty distribution U1 
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Table 2: The AOR (and 95% probability interval computed from the total standard error which 

includes participant sampling variability and exposure uncertainty) when applying all uncertainty 

factors (U1, U2, and U3) simultaneously in Monte Carlo simulations.  The AOR (and 95% 

confidence interval computed from participant sampling variability only) using the original 

exposure assignments is 1.11 (0.99, 1.24).    

φ σ2 
 0.13 0.67 1.38 
0 1.11(0.99, 1.25) 1.11 (0.98, 1.26) 1.12 (0.97, 1.28) 
0.5 1.11 (0.99, 1.25) 1.11(0.98, 1.26) 1.11 (0.97, 1.27) 
0.9 1.11 (0.99, 1.24) 1.11 (0.98, 1.25) 1.10 (0.96, 1.27) 
0.95 1.11 (0.99, 1.25) 1.11 (0.97, 1.26) 1.10 (0.96, 1.26) 
σ2 = Log variance of the uncertainty distributions U1, U2, and U3 

φ = autocorrelation factor of uncertainty distribution U1 
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Table 3:  Percent contribution of participant exposure uncertainty to the total uncertainty for the 

combined effect of participant sampling variability and exposure uncertainty 

φ σ2 
 0.13 0.67 1.38 
0 5 % 18 % 29 % 
0.5 5 % 19 % 30 % 
0.9 5 % 19 % 31 % 
0.95 5 % 21 % 30 % 
σ2 = Log variance of the uncertainty distributions U1, U2, and U3 

φ = autocorrelation factor of uncertainty distribution U1; not applicable to uncertainty factors U2 or U3. 
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Figure Legends 

Figure 1. Estimated annual average PFOA water concentrations in the six public water districts 

(adapted from Shin et al., 2011a).  Concentrations are shown in log (base 10) micrograms/liter. 

Figure 2. PFOA drinking water concentrations in Pomeroy PWD over time- comparing original 

estimates with Monte Carlo iterations using uncertainty factors with parameter values of σ2 = 

0.13 and either (a) φ = 0.95 for high autocorrelation or (b) φ = 0 for no autocorrelation. 

Concentrations are shown in log (base 10) micrograms/liter.  

Figure 3. An example plot of the mean and the 95% probability interval of the correlation 

coefficient between the estimated serum concentrations for each Monte Carlo iterate and the 

original estimated serum concentrations, for all the participants, over time (U1, U2, and U3 with 

φ = 0.95, σ2 = 1.38).
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Figure 1. 
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Figure 2. 
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Figure 3.  
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